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The problem for a thin near-wall region is reduced, within the triple-deck approach,
to unsteady three-dimensional nonlinear boundary-layer equations subject to an in-
teraction law. A linear version of the boundary-value problem describes eigenmodes
of different nature (including crossflow vortices) coupled together. The frequency ω
of the eigenmodes is connected with the components k and m of the wavenumber
vector through a dispersion relation. This relation exhibits two singular properties.
One of them is of basic importance since it makes the imaginary part Im(ω) of the
frequency increase without bound as k and m tend to infinity along some curves in
the real (k, m)-plane. The singularity turns out to be strong, rendering the Cauchy
problem ill posed for linear equations.

Accounting for the second-order approximation in asymptotic expansions for the
upper and main decks brings about significant alterations in the interaction law. A
new mathematical model leans upon a set of composite equations without rescaling
the original independent variables and desired functions. As a result, the right-hand
side of a modified dispersion relation involves an additional term multiplied by a small
parameter ε = R−1/8, R being the reference Reynolds number. The aforementioned
strong singularity is missing from solutions of the modified dispersion relation. Thus,
the range of validity of a linear approximation becomes far more extended in ω, k
and m, but the incorporation of the higher-order term into the interaction law means
in essence that the Reynolds number is retained in the formulation of a key problem
for the lower deck.

1. Introduction
In recent years the rising cost of fuel has focused research attention on the total drag

force, since substantial savings are possible if the boundary layer can be maintained
in the laminar state at cruise. Therefore, there is currently strong interest in the
problem of boundary-layer instability and transition on swept wings of aircrafts
operating at high Reynolds numbers. However stability properties of a steady three-
dimensional boundary-layer flow are quite different from those of the corresponding
two-dimensional flow where they manifest themselves in the form of travelling self-
excited Tollmien–Schlichting (TS) waves. Typical three-dimensional flows of practical
importance including swept wings, cones at incidence, and rotating disks exhibit a
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rich variety of routes to instabilities that are generic to more complicated motions
of a viscous fluid. For instance, the flow over a swept wing is susceptable to four
types of instabilities, eventually leading to transition. They are leading-edge instability
and contamination, centrifugal instability stemming from the blunt-nose curvature,
streamwise TS instability and crossflow instability. The first two are more specific:
centrifugal instability does not come into play at all if the wing is a flat swept
wedge. The latter two types are general and, perhaps, a consistent characteristic
of the instabilities suffered by three-dimensional boundary layers is the presense of
streamwise vortices in the velocity field.

Insofar as crossflow instability is peculiar to three-dimensional shear flows and is
absent from the corresponding two-dimensional flows it merits some further com-
ments. The discovery of the crossflow instability is often attributed to Gray (1952)
who found closely spaced stationary streaks in the direction of a local external stream
in flight tests with a yawed wing. Shortly after his observations Gregory, Stuart &
Walker (1955) put the work on stability properties of three-dimensional boundary
layers on the firm basis of a linear small-disturbance theory. The key element of the
theory is a transformation by Squire (1933) reducing the three-dimensional temporal
stability problem to a two-dimensional one. Since that time a lot of calculations have
been performed for the boundary-layer flows over swept wings and rotating disks.
For the most part computer programs are designed to start with solving the initial
value problem which gives the temporal development of disturbances in the unstable
boundary layer on the assumption that it can be treated as quasi-parallel. However,
an important feature of three-dimensional viscous shear flows is that streamwise
TS instability and crossflow instability can be coupled together thus making the
mathematical analysis and experimental identification of each of them an extremely
challenging problem. According to Poll (1985) and Nitschke-Kowsky & Bippes (1988)
coexisting travelling waves originate at approximately the same chordwise station
as where the crossflow instability first appears. Recent results of Lingwood (1995)
published when the present paper was in the process of being reviewed point to
absolute instability of the rotating-disk flow.

The final step of the transition-prediction method based on the linear stability
approach calls for an eN-factor where the value of N is to be inferred from both
wind-tunnel and flight tests. The eN-transition-prediction scheme has been indepen-
dently invented by Smith & Gamberoni (1956) and Van Ingen (1956) as applied
to two-dimensional flows. However, the principal routes to transition in a two-
dimensional boundary layer are milder, usually exhibiting a long distance of the
linear amplification. In three-dimensional boundary layers nonlinearity comes into
play at very early stages of the disturbance development. According to Hefner &
Bushnell (1980) the exponent N varies depending on environmental disturbances:
roughly speaking its value can be estimated as being of order 10. Details of the
parallel-stability problem formulation, physical mechanisms controlling instabilities
of different types, mathematical techniques involved, and results obtained are available
in Mack (1984), Arnal (1986), Arnal & Juillen (1987) and Reed & Saric (1989).

An asymptotic approach to posing hydrodynamic stability problems leans upon
the concept of an interactive boundary layer where the pressure variations and the
displacement thickness are to be evaluated simultaneously. As applied to three-
dimensional viscous shear flows, this approach has been put forward by Cebeci &
Stewartson (1980). Asymptotic simplifications arising within the triple-deck theory
are discussed by Manuilovich (1983), whereas Stewart & Smith (1987) shed more light
on some effects of the travelling TS waves and crossflow disturbances, with particular



Wave motion in a steady three-dimensional subsonic boundary layer 105

emphasis placed on the steady eigenmodes. An analysis along these lines is set forth
in Ryzhov & Terent’ev (1991) where the eigenmodes of different nature are coupled
through a unified dispersion relation. A plane formed by two real wavenumbers in
the local streamwise and spanwise directions serves to establish singular features, one
of which being of fundamental significance. To be specific, the imaginary part of the
frequency grows without bound as values of the wavenumbers tend to infinity along
some curves in this plane. The singularity turns out to be strong enough to make the
Cauchy problem ill posed in the linear approximation. For convenience the causes
of the singularity in question are reconsidered below as the starting point for the
development of an appropriate asymptotic model where the imaginary part of the
eigenmode frequencies remains bounded in the whole plane of the real wavenumbers.

The geometry of a solid body in the asymptotic model is chosen as simple as
possible. The idea is to take advantage of a swept flat plate where the crossflow in
the near-wall region originates owing to a pressure gradient imposed from outside.
Experimentally, the infinite swept condition with no variations of the stationary
pressure distribution or the external velocity field in the spanwise direction is achieved
by inserting appropriately contoured end-plates (Saric & Yeates 1985; Nitschke-
Kowsky & Bippes 1988; Kachanov, Tararykin & Fedorov 1990). This technique
appears to be especially helpful in discriminating between the centrifugal (Görtler)
instability stemming from the blunt-nose curvature of a wing and the crossflow
instability with vortices all rotating in the same direction. In what follows the solid
body surface is assumed to be a swept flat plate with a given external pressure
gradient that builds up the three-dimensional velocity field within the boundary layer.

A composite asymptotic model is advanced to provide a unified treatment of
regular oscillations with moderate values of the frequency and wavenumbers as well
as the aforementioned extreme when both wavenumbers tend to infinity giving rise to
an unbounded increase of the amplitude growth rate. Alterations introduced in the
interaction law relating the self-induced pressure to the instanteneous displacement
thickness are the cornerstone of the new approach that involves a small parameter
ε = R−1/8 of the conventional triple-deck theory. Centrifugal forces supported by
highly curved streamsurfaces in the main deck play an important part in the modified
interaction law. However, the triple-deck structure of the disturbance field remains
intact as a whole and lays the groundwork for the extended asymptotic theory.
A dispersion relation is analysed to reinforce the statement that the triple-deck
singularity entering the linear approximation is missing from it if ε 6= 0. A relevant
correction term included in the interaction law comes automatically into operation
to alleviate and smear out the singular behaviour of eigenmodes in the limiting case.
Computed results exhibit a very strong dependence on ε even in the range of moderate
wavenumbers. This is especially true with regard to the limiting case of crossflow
instability leading to the jet-like near-wall fluid motion in the spanwise direction.

The local Reynolds number R is based on a reference length L∗ associated with
a specific point on the plate, the free-stream velocity U∗∞, density ρ∗∞ and viscosity
µ∗∞ just outside the boundary layer. Only subsonic flows are under consideration,
so the Mach number M∞ < 1. The time t′ and Cartesian coordinates (x′, y′, z′) are
non-dimensionalized with respect to L∗/U∗∞ and L∗, respectively; the x′-axis is aligned
with the direction of the local free stream, y′ stands for the normal distance and z′

defines the local spanwise direction (which is not necessarily parallel to the leading
edge). The corresponding non-dimensional velocities (u′, v′, w′) are based on U∗∞, and
their profiles Uxo(y2), 0, Uzo(y2), where y′ = R−1/2y2, determine the boundary-layer
properties, Uzo being the crossflow in a sense which is most commonly in use (Reed
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Figure 1. Schematic of velocity components in a three-dimensional boundary layer illustrating the
definition of crossflow. The x′-axis of a Cartesian frame of reference is aligned with the direction
of the local potential flow, the z′-axis points in the spanwise direction.

& Saric 1989). A schematic view of the mainflow and crossflow velocities is given
in figure 1. In the frame of reference adopted both wall shear stresses dUxo(0)/dy2,
dUzo(0)/dy2 are non-zero, on the other hand Uzo → 0 as y2 → ∞. Given that a ratio
µ∗/µ∗∞ of viscosities is expressed in terms of a ratio T ∗/T ∗∞ of temperatures by the
Chapman linear law µ∗/µ∗∞ = C(T ∗/T ∗∞), the normalized wall shear stresses

τxτw = C1/2 T
∗
w

T ∗∞

dUxo(0)

dy2

, τzτw = C1/2 T
∗
w

T ∗∞

dUzo(0)

dy2

(1.1a, b)

with τ2
x + τ2

z = 1, turn out to be of prime importance in the triple-deck approach (see
for example Stewartson 1969; Stewart & Smith 1987; Ryzhov & Terent’ev 1991). The
plate is assumed to be thermaly insulated, and so the subscript w in (1.1a, b) refers to
adiabatic conditions. The density ρ′ and excess pressure p′ are non-dimensionalized
with respect to ρ∗∞ and ρ∗∞U

∗2

∞ , respectively, and R0(y2) denotes the density profile in
the boundary layer with dR0(0)/dy2 = 0.

Conventional triple-deck arguments set forth in §2 result in boundary-layer equa-
tions. However, the leading terms of these equations are supplemented by some
correction terms in order to facilitate an analysis of possible singularities. The linear
approximation is introduced in §3. A discussion of a dispersion relation connect-
ing the frequency of eigenmodes with two wavenumbers follows in §4 in the classical
triple-deck framework. The limiting case of short-scaled jet-like disturbances is treated
in §5 to show that centrifugal forces arising owing to highly curved streamsurfaces in
the main deck are of prime importance for mitigating the corresponding triple-deck
singularity. Then a new composite asymptotic model is formulated in §6; it leans upon
alterations in the interaction law and involves, as a consequence, a small parameter
ε = R−1/8 in an explicit form. The triple-deck singularity turns out to be suppressed in
the context of the composite model that covers moderate as well as indefinitely large
values of both wavenumbers. Concluding remarks in §7 demonstrate the suitability
of the Korteweg–de Vries equation for investigation of larger oscillations.

2. Equations of the wave motion
We begin with the conventional asymptotic triple-deck approach as applied to

the analysis of boundary-layer stability properties in the general three-dimensional
context. Thus, the disturbance pattern with pertinent scaling of both independent
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variables and desired functions in terms of a small parameter ε = R−1/8, R being the
local Reynolds number, is supposed to be known from the earlier work in this area (see
for example Stewartson 1969; Messiter 1970; Smith, Sykes & Brighton 1977; Stewart
& Smith 1987, among others). However, as Ryzhov & Terent’ev (1991) indicated, the
triple-deck theory has intrinsic flaws which manifest themselves in the form of two
singularities. The first singularity causes the eigenmode frequency to indefinitely grow
when the oscillation wavenumbers in the local streamwise and spanwise directions
attain some real finite values. The second, and much stronger, singularity results in
predicting amplitude amplification rates which prove to increase without bound in
the limit as values of the two wavenumbers tend to infinity according to a certain
law. Aiming to obviate this evident shortcoming of the triple-deck scheme we choose
to retain in asymptotically simplified equations of fluid motion the main second-
order term without rescaling time, space variables, velocity-vector components and
thermodynamical entities within the frequency/wavenumber range where the triple-
deck theory fails to correctly predict the wave-system development.

An estimation for the time scale adopted in the triple-deck approach is O(ε2)
whereas the local streamwise and spanwise length scales are both O(ε3). The latter
is short compared to the O(1) scale over which the base steady flow varies but large
compared to the O(ε4) boundary-layer thickness. Accordingly, we introduce two sets
of independent variables

t′ = ε2tm = ε2τ−3/2
w C1/4(T ∗w/T

∗
∞)t, (2.1a)

(x′, z′) = ε3(xm, zm) = ε3τ−5/4
w C3/8(T ∗w/T

∗
∞)3/2(x, z), (2.1b)

where the factors τw , C and T ∗w/T
∗
∞ are used to normalize the resulting equations in

the upper and lower sublayers. On the other hand, no attempt is made to incorporate
the local outer-stream Mach number M∞ < 1 into the affine transformation (2.1a, b)
since the dependence on a difference 1 −M2

∞ is generic to disturbances propagat-
ing through a three-dimensional boundary layer and therefore it cannot be ruled
out from controlling equations and matching conditions even in the leading-order
approximation (Stewart & Smith 1987; Ryzhov & Terent’ev 1991).

In the upper sublayer the normal coordinate y′ is stretched by means of

y′ = ε3τ−5/4
w C3/8

(
T ∗w/T

∗
∞
)3/2

y1 (2.2)

and the velocity field as well as density and pressure variations have the following
asymptotic representation:

(u′ − 1, v′, w′, ρ′ − 1, p′) = ε2τ1/2
w C1/4(u1, v1, w1, ρ1, p1) (2.3)

which does not involve the ratio T ∗w/T
∗
∞ of temperatures. Upon substituting (2.1)–(2.3)

into the governing Navier–Stokes equations we arrive at a system of simplified equa-
tions where the main second-order terms are expressed through the time-derivatives
of the velocity components or thermodynamical entities multiplied by a new small

parameter ε1 = ετ
1/4
w C1/8

(
T ∗w/T

∗
∞
)1/2

. With ε1 put to zero, these equations reduce
to the leading-order equations considered in the conventional triple-deck approach,
whereas the time-derivative terms are shifted to the second-order approximation.
However, allowing for unsteadiness of the wave motion in the upper sublayer might
be expected to lead in some cases to a profound destabilizing effect on the laminar
state of a boundary layer.

The system of equations controlling the fluid motion in the upper sublayer can be
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simplified still further. A relation ρ1 = M2
∞p1 valid to within second-order accuracy

means that the pressure and density variations obey the adiabatic law. Then, the
velocity field has a potential ϕ1 such that u1 = ∂ϕ1/∂x, v1 = ∂ϕ1/∂y1, w1 = ∂ϕ1/∂z.
As a result three of the asymptotically simplified equations reduce to the single
Lagrange–Cauchy integral

p1 = −ε1
∂ϕ1

∂t
− ∂ϕ1

∂x
. (2.4)

With (2.4) taken into account, an equation for ϕ1 is easily deducible from the
remaining equations of motion in the form

2ε1M
2
∞
∂2ϕ1

∂t∂x
−
(
1−M2

∞
) ∂2ϕ1

∂x2
− ∂2ϕ1

∂y2
1

− ∂2ϕ1

∂z2
= 0. (2.5)

The mixed time–space derivative ∂2ϕ1/∂t∂x here proved to be of crucial significance
in extending instability properties of a boundary layer in the transonic regime from
high subsonic to moderate supersonic velocities (Ryzhov 1993). However, for incom-
pressible fluid (in the limit as M∞ → 0) the unsteady term drops out of (2.5) with the
consequence that ϕ1 is defined by the Laplace equation. The same equation still holds
within the entire subsonic regime where (1 −M2

∞) = O(1). Thus, upon neglecting
ε1∂ϕ1/∂t in (2.4), we are left with a relation

p1 =
1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

∂2ϕ1(t, ξ, 0, ζ)/∂ξ∂y1{
(x− ξ)2 +

(
1−M2

∞
) [
y2

1 + (z − ζ)2
]}1/2

dζ (2.6)

which gives p1 in terms of the normal derivative ∂ϕ1/∂y1 defined on the plane
y1 = 0.

When analysing the disturbance behaviour in the main deck, the most convenient
way is to work with the unstretched independent variables tm, xm, zm and the normal
coordinate y′ = ε4y2 typical of the classical boundary-layer theory of Prandtl. The
scalings of the desired functions,[

u′ −Uxo(y2), w
′ −Uzo(y2), ρ

′ − R0(y2)
]

= ε(u2, w2, ρ2), (2.7a)

(v′, p′) = ε2(v2, p2), (2.7b)

are directly taken from the triple-deck consideration. In (2.7a) distributions of the
velocity components Uxo,Uzo and density R0 are assumed to be known from a solution
of the global problem specifying a stationary boundary layer on a flat surface. Hence,
the crossflow Uzo develops because of the pressure gradient imposed from outside
by any artificial device. Owing to the special choice of the coordinate axes x′, z′

as shown in figure 1, we have Uxo → 1, Uzo → 0 as y2 → ∞ in keeping with the
crossflow definition in Reed & Saric (1989) that is common to most theoretical and
experimental studies.

Substitution of the asymptotic sequences (2.7a, b) into the original Navier–Stokes
equations with allowance made for scalings (2.1a, b) of independent variables tm, xm, zm
yields a system of approximate equations comprising the leading-order and main
correction terms. The contribution to the higher-order terms comes from two sources.
The first one again comes from the time-derivatives of all the required functions. As
in the upper sublayer, these derivatives may be disregarded provided that we restrict
our consideration to the strong singularity in the amplitude growth rates and assume(
1−M2

∞
)

= O(1). The second source relates to the spatial derivatives ∂p2/∂xm and



Wave motion in a steady three-dimensional subsonic boundary layer 109

∂p2/∂zm of the pressure along both directions in a plane parallel to the solid flat
surface. But the most conspicuous feature of the system in question is that the
normal pressure gradient is retained in

εUxo

∂v2

∂xm
+ εUzo

∂v2

∂zm
= − 1

R0

∂p2

∂y2

(2.8)

rather than being equated with zero. A highly stabilizing effect exerted by the normal
pressure gradient on the TS eigenmodes is known from the study by Ryzhov (1993) of
two transonic regimes peculiar to laminar boundary-layer flows. As distinct from the
latter two-dimensional case, the normal pressure gradient in (2.8) has an additional
component Uzo∂v2/∂zm of the centrifugal force depending on the magnitude of the
crossflow Uzo. We shall see below that this component stabilizes the crossflow vortices,
suppressing their excitation at finite values of Reynolds number R (and ε).

The system of equations governing the disturbance pattern in the main deck can
be reduced to two equations for the functions v2 and p2. Eliminating ρ2, u2 and w2

between the equations of motion yields

Uxo

∂2v2

∂xm∂y2

+Uzo

∂2v2

∂zm∂y2

− dUxo

dy2

∂v2

∂xm
− dUzo

dy2

∂v2

∂zm

+ εM2
∞

[(
U2
xo−

1

M2
∞R0

)
∂2p2

∂x2
m

+2UxoUzo

∂2p2

∂xm∂zm
+

(
U2
zo−

1

M2
∞R0

)
∂2p2

∂z2
m

]
= 0. (2.9)

Being coupled together, (2.8) and (2.9) provide a closed system. Also, p2 can be
replaced in (2.9) by its limiting value p2∞(tm, xm, zm), as y2 → ∞, because the change
in pressure across the main deck is O(ε) because of (2.8). Thus, the normal velocity is
obtainable first from (2.9) independent of the pressure, then integrating (2.8) gives an
expression for the pressure. This asymptotically valid procedure is used as a basis in
the following sections. Note also that (2.9) essentially simplifies on passing to the limit
of incompressible fluid as M∞ → 0. On the other hand, the possibility for a critical
layer to be embedded in the main deck is completely ignored with p2∞ substituted for
p2 in (2.9). This implies that disturbances of the travelling wave type are supposed
to propagate within the near-wall sublayer. To meet the latter constraint the phase
velocity of disturbances must be O(ε) or less.

In the near-wall viscous sublayer we employ again the stretched independent
variables t, x, z defined in (2.1a, b) and introduce the normal coordinate

y′ = ε5τ−3/4
w C5/8

(
T ∗w/T

∗
∞
)3/2

y3. (2.10)

The velocity components are scaled and normalized here by means of

(u′, w′) = ετ1/4
w C1/8(T ∗w/T

∗
∞)1/2(u3, w3), (2.11a)

v′ = ε3τ3/4
w C3/8(T ∗w/T∞)1/2v3, (2.11b)

whereas the density ρ′ = R0(0) = (T ∗w/T
∗
∞)−1 is held constant and the pressure p′

takes on the same form as in (2.3). Upon substituting (2.1a, b), (2.10), (2.11a, b) and
aforementioned expressions for ρ′ and p′ into the initial Navier–Stokes equations we
arrive at a system of Prandtl equations

∂u3

∂x
+
∂v3

∂y3

+
∂w3

∂z
= 0, (2.12a)
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∂u3

∂t
+ u3

∂u3

∂x
+ v3

∂u3

∂y3

+ w3

∂u3

∂z
= −∂p3

∂x
+
∂2u3

∂y2
3

, (2.12b)

∂w3

∂t
+ u3

∂w3

∂x
+ v3

∂w3

∂y3

+ w3

∂w3

∂z
= −∂p3

∂z
+
∂2w3

∂y2
3

, (2.12c)

for an incompressible boundary layer where both components ∂p3/∂x and ∂p3/∂z
of the pressure gradient in a plane parallel to the flat solid surface are to be
evaluated simultaneously with the velocity field. Since the pressure variations across
the near-wall sublayer turn out to be O(ε4) we put ∂p3/∂y3 = 0, in keeping with the
conventional version of the triple deck. Accordingly, no additional higher-order terms
depending on the small parameter ε enter (2.12a–c), so we can use pertinent results
set forth in Stewart & Smith (1987)and Ryzhov & Terent’ev (1991).

Solutions to systems of equations (2.8), (2.9) and (2.12a–c) for the main deck and
the lower near-wall sublayer, respectively, are to be developed subject to matching
conditions which will be discussed in some detail below. Besides, (2.6) needs to be
taken into account through the matching with a solution for the main deck. The
no-slip conditions u3 = v3 = w3 = 0 hold at the flat surface y3 = 0.

3. Linear approximation
The velocity componentsUxo(y2) andUzo(y2) of the initially steady three-dimensional

boundary layer in the vicinity of a wall, as y2 → 0, are Uxo = y2dUxo(0)/dy2 and
Uzo = y2dUzo(0)/dy2 to leading order. Thus, following the traditional theory of
hydrodynamic stability we may write

(u3−τxy3, v3, w3−τzy3, p3) = a [τxf(y3), g(y3), τzh(y3), p30] exp[i(ωt+kx+mz)] (3.1)

with allowance made for the definition of τx and τz in (1.1a, b). On the assumption
that a value of the travelling wave amplitude a is indefinitely small, substitution of
(3.1) into the system of the Prandtl equations yields

dg

dy3

= −i(kτxf + mτzh), (3.2a)

d2f

dy2
3

= i(ω + kτxy3 + mτzy3)f + g +
ik

τx
p30, (3.2b)

d2h

dy2
3

= i(ω + kτxy3 + mτzy3)h+ g +
im

τz
p30. (3.2c)

Let us consider a reduced wavenumber K = kτx + mτz and a function F =
kτxf + mτzh. Upon differentiating (3.2b), (3.2c) and eliminating dg/dy3 between the
resulting expressions and (3.2a) we obtain

d3F

dy3
3

− i(ω +Ky3)
dF

dy3

= 0. (3.3)

Precisely the same equation controls the propagation of TS waves in a Blasius
boundary layer with parameters independent of z. This property is the essence of a
transformation by Squire (1933) which remains valid asymptotically, as ε → 0, even
if a steady three-dimensional motion of a compressible fluid involves the crossflow in
the local spanwise direction.
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Two constraints to be imposed on a desired solution of (3.3) at the solid sur-
face come from the no-slip conditions f = g = h = 0 and an appropriate linear
combination of (3.2b) and (3.2c); they are

F = 0,
d2F

dy2
3

= i(k2 + m2)p30 at y3 = 0. (3.4)

The standard technique (see for example Ryzhov & Terent’ev 1986) which is based on
introducing a new independent variable Y = Ω + i1/3K1/3y3, Ω = i1/3ωK−2/3 can be
used to analyse (3.3). It should be mentioned that a cut along the positive imaginary
semi-axis is drawn in the complex K-plane which defines a single-valued branch of
the function K1/3 by means of −3π/2 < arg(K) < π/2. As a result we have

dF

dY
=

i1/3(k2 + m2)p30

K2/3

[
dAi(Ω)

dY

]−1

Ai(Y ) (3.5)

where Ai(Y ) denotes an Airy function. In addition to (3.4) we need two more
constraints to evaluate the constant p30 and specify the limiting condition for F at
the outer reaches, as y3 →∞, of the near-wall sublayer. Both of them are obtainable
from the matching of (2.6) with the disturbance field in most of the boundary layer.

In the upper deck, a solution of travelling wave type that corresponds to (3.1)
reads

ϕ1 = aϕ10 exp[i(ωt+ kx+ mz)− `y1], (3.6a)

` =
[(

1−M2
∞
)
k2 + m2

]1/2
. (3.6b)

The square root on the right-hand side of (3.6b) is meant to be positive for all real
(positive as well as negative) values of k and m provided that M∞ < 1. Applying
(3.6a) to (2.6) taken at y1 = 0 results in

p1 = ap10 exp [i(ωt+ kx+ mz)− `y1] , p10 = −ikϕ10. (3.7)

In what follows it is preferable to deal with the constant p10 rather than ϕ10.
In the main deck we put

(u2, v2, w2, ρ2, p2) = a [f2(y2), g2(y2), h2(y2), ρ̂2(y2), p̂2(y2)] exp[i(ω̂tm + k̂xm + m̂zm)]

(3.8)

where the frequency ω̂ and wavenumbers k̂, m̂ in unstretched variables tm, xm, zm are
expressed in terms of ω and k, m through

ω̂ = τ3/2C−1/4(T ∗w/T
∗
∞)−1ω, (k̂, m̂) = τ5/4C−3/8(T ∗w/T

∗
∞)−3/2(k, m). (3.9)

As has been explained above, p2 can to leading order be replaced in (2.9) by its
limiting value p2∞(tm, xm, zm), as y2 →∞. Introducing then (3.8) into (2.9) we arrive at
the simple equation

dg2

dy2

− k̂dUxo/dy2 + m̂dUzo/dy2

k̂Uxo + m̂Uzo

g2

+iεp̂2∞

[
M2
∞

(
k̂Uxo + m̂Uzo

)
− k̂2 + m̂2

R0(k̂Uxo + m̂Uzo)

]
= 0 (3.10)

whose solution has to be matched, as y2 → ∞ and y1 → 0, to an expression ensuing
from the definition v1 = ∂ϕ1/∂y1 of the vertical velocity in the upper sublayer. Upon
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matching, the solution of (3.10) becomes

g2 = τ1/2
w C1/4ip10

(
k̂Uxo + m̂Uzo

){
−

ˆ̀

k̂2
+ ε

ˆ̀2

k̂2
y2

+ ε(k̂2 + m̂2)

∫ ∞
y2

[
1

k̂2
− 1

R0(k̂Uxo + m̂Uzo)2

]
dy2

}
, (3.11a)

ˆ̀ =
[(

1−M2
∞
)
k̂2 + m̂2

]1/2

= τ5/4
w C−3/8(T ∗w/T

∗
∞)−3/2`. (3.11b)

With a relationship for g2 to hand, we integrate an equation for p̂2 which derives
from (2.8) provided that a class of travelling waves (3.8) is under consideration. The
result of integration can be cast in the form

p̂2 = p̂20 − ετ1/2
w C1/4p10

ˆ̀y2

−iεk̂

∫ y2

0

(
R0Uxog2 + τ1/2

w C1/4 ip10
ˆ̀

k̂

)
dy2 − iεm̂

∫ y2

0

R0Uzog2dy2 (3.12)

where p̂20 = p̂2(0). A value of p̂20 comes from the two-term matching of (3.12) with
g2 given by (3.11a) in the limit as y2 → ∞ to the corresponding expansion of (3.7)
evaluated as y1 → 0. The final result reads

p̂20 = τ1/2
w C1/4 p10

ˆ̀

k̂2

[
k̂2

ˆ̀
− εk̂2D(xx) + 2εk̂m̂D(xz) + εm̂2D(zz)

]
(3.13)

with all the integrals

D(xx) =

∫ ∞
0

(1− R0U
2
xo)dy2, (3.14a)

D(xz) =

∫ ∞
0

R0UxoUzody2, (3.14b)

D(zz) =

∫ ∞
0

R0U
2
zody2, (3.14c)

being independent of the frequency ω̂ and wavenumbers k̂, m̂ of travelling waves.
According to (3.14a–c), D(xx), D(xz), D(zz) are the instanteneous momentum thicknesses
of the boundary layer. In terms of g2 and p̂20 the horizontal velocities can be expressed
as

f2 = i
dUxo

dy2

g2

k̂Uxo + m̂Uzo

− εk̂

R0

p̂20

k̂Uxo + m̂Uzo

, (3.15a)

h2 = i
dUzo

dy2

g2

k̂Uxo + m̂Uzo

− εm̂

R0

p̂20

k̂Uxo + m̂Uzo

. (3.15b)

We are now in a position to write down the first required constraint

p30 = τ−1/2
w C−1/4p̂20(p10, k̂, m̂) (3.16)

with p̂20 depending on p10 and also k̂, m̂ through (3.13). With allowance made for
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(3.16) integrating (3.5) yields

Φ(Ω) = τ−1/2
w C−1/4 i1/3(k2 + m2)

K2/3

p̂20

F(∞)
, (3.17a)

Φ(Ω) =
dAi(Ω)

dY

[∫ ∞
Ω

Ai(Y )dY

]−1

(3.17b)

where k̂, m̂ and ˆ̀ involved in p̂20 are replaced by k, m, and ` using (3.9) and (3.11b),
respectively. The ratio p̂20/F(∞) entering the right-hand side of (3.17a) is to be found
from matching a linear combination kτxf2 +mτzg2 defined by means of (3.15a, b) with
F , as y2 → 0 and y3 → ∞. This final step results in a dispersion relation connecting
the frequency ω of eigenmodes with their two wavenumbers k and m. However, before
we set about analysing the dispersion relation for finite values of ε, let us consider its
properties in the limit as ε→ 0.

4. Classical triple-deck approach
If ε = 0 a relationship

lim
y2→0

g2

k̂Uxo + m̂Uzo

= −iτ1/2
w C1/4

ˆ̀

k̂2
p10 (4.1)

is obtainable from (3.11a). With (4.1) accounted for, (3.15a, b) reduce to

f2(0) = τ1/2
w C1/4 dUxo(0)

dy2

ˆ̀

k̂2
p10, h2(0) = τ1/2

w C1/4 dUzo(0)

dy2

ˆ̀

k̂2
p10. (4.2a, b)

Upon substituting the normalized wall shear stresses τx and τz defined by (1.1a, b) for
dUxo(0)/dy2 and dUzo(0)/dy2 in (4.2a, b), respectively, the second desired condition
takes the simple form

F(∞) =
`K

k2
p10, (4.3)

where K = kτx+mτz . Insofar as p̂20 = τ
1/2
w C1/4p10 in the classical triple-deck approach

we arrive at the following dispersion relation (Manuilovich 1983; Stewart & Smith
1987; Ryzhov & Terent’ev 1991):

Φ(Ω) =
i1/3k2(k2 + m2)[

(1−M2
∞)k2 + m2

]1/2
K5/3

. (4.4)

Here the square root of (1−M2
∞)k2 +m2 is meant to be positive for all real values of k

and m. By virtue of (3.17b), Φ has an explicit expression in terms of a derivative and
improper integral of the Airy function depending on a single argument Ω that makes
mapping (4.4) onto the complex Ω-plane particularly illuminative when analysing the
dispersion-relation properties. All the singular points in the Ω-plane are known from
Ryzhov & Terent’ev (1986, 1991) whose results are used as guidelines below.

Let k and m be real and positive. On the strength of a constraint −3π/2 <
arg(K) < π/2 imposed on values of K in §3, we write −k and −m as e−iπk and
e−iπm, respectively. Suppose that three numbers ω, k, m with ω being complex satisfy
(4.4). Then the other three numbers −ωc.c.,−k,−m, where a subscript c.c. denotes
the appropriate complex conjugate, also form a solution to (4.4). This statement



114 O. S. Ryzhov and E. D. Terent’ev

0

2

4

–2

–4
–6 –4 –2 0

Re (X)

Im (X)
X5*

X4*

X3* X2*
X1*

X(–)
i2* X(–)

i1

X2*

Xd1

Xd5 Xd3

Xd4

X(+)
i2

X(+)
i1

Figure 2. Trajectories of the dispersion-relation roots in the complex Ω-plane made by image points
with both wavenumber k, m taking real values. The points Ωdj on the real negative semi-axis are

zeros of dAi(Ω)/dY ; the complex conjugate pairs Ω(±)
Ij are defined by an equation

∫ ∞
Ω

Ai(Y )dY = 0;
the limiting points Ωj∗ for m > 0 are fixed by sharp turns in the motion of image points along
trajectories; j = 1, 2, . . . .

immediately follows from the definition

Ω(−ωc.c.,−k,−m) = −i1/3ωc.c.(−kτx − mτz)−2/3 = Ωc.c. (4.5)

of Ω and symmetry properties of the Airy function leading to the simple result

Φ(Ωc.c.) = Φ(Ω)c.c.. (4.6)

With k and m fixed, the dispersion-relation roots form a countable set of image points
in the Ω-plane. When k and m vary taking on real values these points move along
certain trajectories which constitute a collection of dispersion curves. It is worthy
of note that each of the image points may proceed in both directions along its own
dispersion curve even if k and m monotonically increase or decrease. As (3.17b) shows,
in the limit k → 0, all the points under consideration approach the real negative semi-
axis and tend to those points which are determined by the roots Ωdj of an equation
dAi(Ωdj)/dY = 0. Accordingly, the dispersion curves Ωj = Ωj(k, m; τx, τz,M∞) may
be arranged in ascending order by labelling them with zeros of dAi(Ωdj)/dY . Figure
2 presents a typical plot of the Ω-plane. The first dispersion curve arising from Ωd1
extends to infinity. All of the dispersion curves with origins at Ωdj , j = 2, 3, . . . , extend

to the points Ω(±)
Ij fixed by means of the complex conjugate roots of an equation

I(Ω(±)
Ij ) = 0 where I(Ω) is an improper integral

∫ ∞
Ω

Ai(Y )dY entering the right-hand
side of (3.17b).

The dispersion curves in figure 2 are identical with those obtainable from the
asymptotic analysis of normal (m = 0) TS waves propagating in a Blasius boundary
layer with τx > 0 and τz = 0 (Ryzhov & Terent’ev 1986). However, in the general
three-dimensional case of interest the spanwise component τz of the wall shear stress
differs from zero and, besides, the spanwise wavenumber m does not vanish (to be
specific we assume that both τx > 0 and τz > 0 in keeping with figure 1). Non-trivial
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values of τz give rise to important distinctions featuring the image-point motion along
each of the dispersion curves in the Ω-plane when passing from a two-dimensional
consideration to the general study of eigenmodes in a three-dimensional boundary
layer. Our concern is primarily with the first dispersion curve since it relates to self-
excited oscillations; all the other curves lead to exponentially damped disturbances.
Recall that steady vortices stretching in the local streamwise direction are at the heart
of crossflow instability: in this case the two wavenumbers k and m are connected
through the dispersion relation (4.4) with Ω = 0. So, the origin of the coordinates is
a degenerate map of steady vortical disturbances onto the Ω-plane, and they need to
be studied separately (see Stewart & Smith 1987).

We consider in more detail the image-point motion along the first dispersion curve
Ω1 with the condition that the streamwise wavenumber k takes negative and positive
values whereas m = m0 = const. The asymptotic behaviour of Ω1, as k → −∞, follows
from

Ω1 →∞ exp(5πi/6). (4.7)

An increase in k leads to downward motion along the curve to a certain limiting
point Ω1∗ whose position is dependent on the sign of m0. Let m0 > 0, then Ω1∗ is
located as shown in figure 2, i.e. in the upper half-plane of the complex Ω-plane.
Precise values of Re(Ω1∗) and Im(Ω1∗) are determined by m0 and the three parameters
τx, τz and M∞. Upon reaching the limiting point the motion along the first dispersion
curve changes to the opposite direction and the image point starts climbing upwards;
as a result (4.7) comes into operation, as K → −0 and k → −m0τz/τx. The passage
through K = 0 is marked by a sudden jump of the image point onto a branch of the
dispersion curve located in the lower half-plane of the Ω-plane, the corresponding
asymptotics being

Ω1 →∞ exp(−5πi/6), (4.8)

as K → +0. It is evident that the first zero Ωd1 of the derivative of the Airy function
is a limiting point in the motion along the lower branch of the first dispersion curve;
it is attained when k = 0. Upon reaching Ωd1 and making a sharp upward turn here
the image point proceeds along the same branch in the opposite direction to complete
its motion with the asymptote (4.8), as k →∞.

The question of how the first dispersion curve is used to describe the image-point
motion provided that m0 < 0 can be readily settled using the symmetry properties
(4.5) and (4.6). A change in the direction of the motion along a branch of this curve in
the upper half-plane takes place at the point Ωd1 when k = 0. The subsequent passage
through K = 0 entails a sudden jump onto another branch of the dispersion curve
which lies in the lower half-plane. The image point moves upwards to a limiting point
Ω1∗ in this half-plane where makes a sharp turn to descend finally. An important
feature is that the points Ω1∗ and Ωd1 are separated by a finite distance if m0 6= 0.
However, K = kτx with m0 = 0, in which case (4.4) reduces to a dispersion relation
controlling normal TS waves in an incompressible Blasius boundary layer. As a result,
Ω1∗ and Ωd1 merge to form a double point, ruling out the possibility for a sharp turn
to occur at k = 0. The situation is similar with regard to the image-point motion
along all the other dispersion curves in figure 2. The only difference is that Ωj → Ω

(±)
Ij ,

j = 2, 3, . . ., as k → ±∞.
The eigenmode growth or decay depends on arg(ω) of the complex frequency ω.

On the other hand, arg(K) can be equal to 0 or −π when both wavenumbers k and
m take on real values. Since the disturbance amplitude exponentially increases in the
range −π < arg(ω) < 0, a domain of self-excited oscillations is defined in the Ω-plane



116 O. S. Ryzhov and E. D. Terent’ev

by conditions

− 5π/6 < arg(Ω) < π/6 if arg(K) = 0, (4.9a)

− π/6 < arg(Ω) < 5π/6 if arg(K) = −π. (4.9b)

Inclination angles of rays shown in figure 2 by the dashed lines are fixed by arg(Ω) =
5π/6 and arg(Ω) = −5π/6. The rays intersect only the first dispersion curve with the
same slope Ω1 ∼ ∞ exp(±5πi/6) at infinity as given in (4.7) and (4.8). So, there exists
a range of real values of k and m to meet the constraints (4.9a, b). Accordingly, the
first root of the dispersion relation specifies the frequency and two wavenumbers of
unstable eigenmodes in this range. All the other roots relate to disturbances with the
amplitude exponentially vanishing with time. One may observe that the analysis of
stability properties in the complex Ω-plane as applied to three-dimensional boundary
layers follows along the lines of the corresponding study by Ryzhov & Terent’ev
(1986) of normal TS waves in a Blasius boundary layer. The sole distinction comes
from the occurrence of a limiting point Ω1∗ which results in the image-point motion
in both directions along the same curve. In addition, the dispersion curves in the
Ω-plane are of standard shape, therefore advantage may be taken of the foregoing
consideration when examining alternative problems on shear-flow stability.

The first singularity in solutions to the dispersion relation comes from the passage
of the reduced wavenumber K through zero with k and m taking on finite values k0

and m0, respectively. The apparent meaning of K = k0τz + m0τz = 0 is that the wave
vector is orthogonal to the direction of the wall shear stress. By virtue of (4.4) we
arrive in the limit K → 0 at the following asymptotic representation:

ω1 ∼ −
c2

0

K
−
√

2

2
(1 + i)

K3

c0

+ . . . , c2
0 =

k2
0(k2

0 + m2
0)[

(1−M2
∞)k2

0 + m2
0

]1/2 , (4.10a, b)

where ω1 implies the first root of ω. In spite of the fact that a singularity enters
Re(ω1), the Cauchy problem remains well posed in a linear approximation for
Im(ω1) = −

√
2K3/(2c0) → 0 in (4.10a, b), as K → 0. An analogous singularity

turns out to also be intrinsic to unsteady Görtler vortices in an incompressible
boundary layer on a curved surface (see Ruban 1990, Savenkov 1990 and critisisms
by Choudhari, Hall & Streett 1994).

The second, and much stronger, singularity stems from non-monotonic behaviour
of ω1 as a function of both wavenumbers. In order to derive this singularity let us
first tackle the issue on level lines of Im(ω1) using results found above in the Ω-plane
on the assumption that k and m are real. The contours are shown in figure 3 for a
boundary layer with M∞ = 0.2, τx =

√
8/3 and τz = 1/3, the symmetry properties

(4.5), (4.6) being clearly recognizable in their shapes. Therefore, we may restrict
ourselves to inspection of the first and the second quadrants of the (k, m)-plane.

It is advisable to put m = ck3 with c > 0 and let k → ∞ for elucidating the
properties of the disturbance amplitude amplification rate which are specified by
curves in the first quadrant. Then (4.4) yields

Φ(Ω) = i1/3c−2/3τ−5/3
z , (4.11)

to leading order, with the right-hand side being independent of k and m. The
magnitude of the frequency ensuing from (4.11) is

ω = i−1/3Ω c2/3τ2/3
z k2. (4.12)

An important conclusion can be drawn from a comparison of (4.11) with a dispersion



Wave motion in a steady three-dimensional subsonic boundary layer 117

0

12

24

–12

–24

m

–8 –4 0 4 8

k

1.
5

0 1.
5

1.
5

–1
.5 0

0

–1.5

0

0

–1
.5

–1
.50–1.5

0

0

Figure 3. Contours of Im(ω1) in the real (k, m)-plane formed by both wavenumbers within the

framework of the classical triple-deck theory; ε = 0,M∞ = 0.2, τx =
√

8/3, τz = 1/3.

relation controlling normal (m = 0) TS waves in an incompressible boundary layer
where the spanwise skin friction τz = 0. In the latter case the disturbance amplitude
remains constant in time if the streamwise wavenumber k = k∗ = 1.0005. It follows

that a constant c = c∗ = k−2
∗ τ

−5/2
z = 0.999τ

−5/2
z determines the asymptotics of neutral

oscillations in a subsonic boundary layer, whatever value of M∞ < 1 is under
consideration. The frequency ω = ω∗ of neutral oscillations is fixed by (4.12). An
analogous statement holds for the third quadrant of the (k, m)-plane where k → −∞.

Thus, the curve m = c∗k
3 is an asymptote to separate self-excited eigenmodes given

by c < c∗ from stable waves with c > c∗. Furthermore, among self-excited eigenmodes
in a Blasius boundary layer we may isolate disturbances whose amplitude amplifi-
cation rate attains extremal values. The corresponding streamwise wavenumbers of
normal (m = 0) TS waves are defined as k = k∗2 = 2.716, k = k∗4 = 4.346 for two
maxima and k = k∗3 = 3.616 for a minimum in between (Ryzhov & Terent’ev 1986;

Smith 1989). It is obvious that the constants c = c∗2 = (k∗2)−2τ
−5/2
z = 0.1356τ

−5/2
z ,

c = c∗3 = (k3)
−2τ

−5/2
z = 0.07648τ

−5/2
z and c = c∗4 = (k∗4)−2τ

−5/2
z = 0.05294τ

−5/2
z pos-

sess analogous extremal properties in the present analysis of short-scaled three-
dimensional disturbances governed by (4.11). In fact, with allowance made for (4.12)

we obtain solutions for Ω1 with two local negative minima Im
[
i−1/3Ω∗12(c

∗
2)

2/3τ
2/3
z

]
,

Im
[
i−1/3Ω∗14(c

∗
4)

2/3τ
2/3
z

]
and a local negative maximum Im

[
i−1/3Ω∗13(c

∗
3)

2/3τ
2/3
z

]
of a

ratio Im(ω1/k
2). A domain around the major local minimum Im

[
i−1/3Ω∗12(c

∗
2)

2/3τ
2/3
z

]
is clearly discernible in figure 3, some wiggles in contours of Im(ω1) are provoked

by the local maximum Im
[
i−1/3Ω∗13(c

∗
3)

2/3τ
2/3
z

]
and the second, less-marked minimum

Im
[
i−1/3Ω∗14(c

∗
4)

2/3τ
2/3
z

]
. In keeping with the aforementioned papers by Ryzhov &
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Terent’ev (1986) and Smith (1989) the double-mound shape of the growth-rate depen-
dence on both wavenumbers dominates the instability of normal (m = 0) TS waves.
Moreover, the amplitude amplification rate of self-excited eigenmodes with c < c∗ in-
herent in the three-dimensional boundary layer is estimated by Im(ω1) ∼ −k2 → −∞
in the limit as k →∞. The occurrence of this singularity is of conceptual importance
since the Cauchy problem turns out to be ill posed in the framework of a linear
version of the triple-deck theory.

We may arrive at the same conclusion that the Cauchy problem for a system
of linear equations is ill posed by considering the second quadrant of the (k, m)-
plane shown in figure 3 (the contours of Im(ω1) in the fourth quadrant are similar
in shape). Let k → −∞ under conditions that m = ck3 and c < 0. Since the
reduced wavenumber K > 0 in view of m > 0, (4.11) and (4.12) still remain valid
if c is replaced by |c|. It follows from the foregoing that a curve m = −c∗k3 with

c∗ = 0.999τ
−5/2
z is the second branch of the asymptote which separates self-excited

eigenmodes from stable waves with exponentially vanishing amplitude. To the left
of this branch a domain stands out sharply whose existence is brought about by

the major local minimum Im
[
i−1/3Ω∗12(c

∗
2)

2/3τ
2/3
z

]
; wiggles in the contours of Im(ω1)

attributable to the local maximum Im
[
i−1/3Ω∗13(c

∗
3)

2/3τ
2/3
z

]
and the second, weaker

minimum Im
[
i−1/3Ω∗14(c

∗
4)

2/3τ
2/3
z

]
are hardly discernible. From a conceptual point of

view, the most important result is that the growth rate of self-excited eigenmodes
with |c| < c∗ complies with an estimate Im(ω1) ∼ −k2 → −∞ in the limit as k → −∞.

5. Short-scaled eigenmodes
We omit an in-depth analysis of high-frequency disturbances of finite wavelength

which obey (4.10a, b) because the corresponding singularity does not lead to ill-
posedness of the Cauchy problem. It will suffice to mention that in this case ω1 tends
to O(ε−1) from (3.7), (3.11a, b) or (3.13). On the other hand, the second, and much
stronger, singularity arising from the assumption that m = ck3, as |k| → ∞, requires
a careful treatment calling into question the very validity of the triple-deck model as
applied to three-dimensional boundary layers.

The simplest way to derive new scalings of the eigenmode frequency and wavenum-
bers in the limiting case under consideration is to compare the leading term k2/` with
the main correction term εm2D(zz) in square brackets on the right-hand side of (3.13).
If ` ∼ m we have k2 ∼ εm3 with the final result k ∼ ε−1/7, m ∼ ε−3/7 ensuing from the
fact that m ∼ k3. The corresponding calibration of the frequency is ω ∼ k2 ∼ ε−2/7.
Then, the position of a critical layer may be estimated through εω ∼ mUzo(y2), as
y2 → 0, whence

y2 ∼ εk−1 ∼ ε8/7. (5.1)

Scalings based on a comparison of the leading term k2/` with terms εkmD(xz) and
εk2D(xx) entering (3.13) would be k ∼ ε−1/5 and k ∼ ε−1/3, respectively. They relate to
eigenmodes with much shorter wavelengths.

With calibration of the frequency and both wavenumbers in hand, we may introduce
new independent variables

t′ = ε16/7t̃ = R−2/7t̃, (5.2a)

x′ = ε22/7x̃ = R−11/28x̃, y′ = ε4y2 = R−1/2y2, z′ = ε24/7z̃ = R−3/7z̃ (5.2b–d)
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for most of the boundary layer when examining disturbances slightly elongated in the
local streamwise direction. The desired functions in this sublayer are sought in the
form of asymptotic sequences

[u′ −Uxo(y2), w′ −Uzo(y2), ρ′ − R0(y2)] = ε8/7 (ũ2, w̃2, ρ̃2) = R−1/7 (ũ2, w̃2, ρ̃2) ,

(5.3a, b)

v′ = ε12/7ṽ2 = R−3/14ṽ2, p′ = ε16/7p̃2 = R−2/7p̃2 (5.3c, d)

From substitution of (5.2a–d) and (5.3a–d) into the original Navier–Stokes equations
we may conclude that of the two second-order terms on the left-hand side of (2.8)
only the last one should be retained, giving rise to a non-vanishing component of the
pressure gradient in a direction normal to the solid surface. The term with the spatial
derivative of v2 with respect to xm becomes negligible. A solution to the resulting
system of asymptotic equations related to new variables reads

ũ2 = Ã(̃t, x̃, z̃)
dUxo

dy2

, ṽ2 = −∂Ã
∂z̃
Uzo(y2), w̃2 = Ã(̃t, x̃, z̃)

dUzo

dy2

, (5.4a–c)

ρ̃2 = Ã(̃t, x̃, z̃)
dR0

dy2

, (5.4d)

p̃2 = −∂
2Ã

∂z̃2

∫ ∞
y2

R0(Y2)U
2
zo(Y2)dY2 (5.4e)

where −Ã denotes, as usual, the instantaneous displacement thickness. Actually, ũ2

as given in (5.4a) separates from the other functions ṽ2, w̃2, ρ̃2 and p̃2 which provide
a two-dimensional model of crossflow disturbances at high Regnolds numbers.

Let us compare this model with one advanced by Messiter & Lin̆án (1976) in their
study of laminar free convection developing in the proximity of a vertical flat plate
and applied by Smith & Duck (1977) and Ryzhov (1982) to elucidating, respectively,
separation and stability of a viscous near-wall jet. It is readily seen that the time,
Cartesian coordinates and the corresponding velocities and excess pressure are scaled
precisely in the same way in both asymptotic models under consideration. Then, (5.4b–
e) yield the same two-dimensional solution for most of the boundary layer as that
derived by Messiter & Lin̆án (1976), Smith & Duck (1977) and Ryzhov (1982) whereas
an additional component ũ2 of the velocity vector controls the disturbance pattern
in the local streamwise direction depending on the basic spanwise motion. Thus, the
crossflow acts like a spanwise near-wall jet in exciting unstable eigenmodes which
may be isolated from streamwise oscillations. The distinctive feature to determine
the crossflow jet-like behaviour stems from a mechanism underlying the self-induced
pressure gradient: as (5.4e) shows it is supported by the local curvature ∂2Ã/∂z̃2 of
streamsurfaces rather than by their slopes. The flow field in the upper deck remains
unperturbed to leading order. That is why the pressure gradient is totally balanced
by centrifugal forces in the main body of the boundary layer.

The characteristic thickness of the lower viscous sublayer is fixed by (5.1), therefore
we may introduce here the scaled normal coordinate through y′ = ε36/7ỹ3 = R−9/14ỹ3.
The density does not vary within this sublayer, accordingly ρ′ = R0(0) = (T ∗w/T

∗
∞)−1.

The velocity field and pressure are represented in the form

(u′, w′) = ε8/7(ũ3, w̃3) = R−1/7(ũ3, w̃3), (5.5a, b)

v′ = ε20/7ṽ3 = R−5/14ṽ3, p′ = ε16/7p̃3 = R−2/7p̃3, (5.5c, d)

again in keeping with Messiter & Lin̆án (1976), Smith & Duck (1977) and Ryzhov
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(1982), and obey a system of asymptotic equations

∂ṽ3

∂ỹ3

+
∂w̃3

∂z̃
= 0, (5.6a)

R0(0)

(
∂ũ3

∂t̃
+ ṽ3

∂ũ3

∂ỹ3

+ w̃3

∂ũ3

∂z̃

)
=

C

R0(0)

∂2ũ3

∂ỹ2
3

, (5.6b)

R0(0)

(
∂w̃3

∂t̃
+ ṽ3

∂w̃3

∂ỹ3

+ w̃3

∂w̃3

∂z̃

)
= −∂p̃3

∂z̃
+

C

R0(0)

∂2w̃3

∂ỹ2
3

(5.6c)

supplemented by ∂p̃3/∂ỹ3 = 0. Since (5.6a, c) do not contain ũ3 these two equations
separate from (5.6b) and can be integrated independently. Then ũ3 is determined to
set up the disturbance pattern in the local streamwise direction as dictated by the
basic spanwise motion. An interaction law

p̃3 = −D(zz)

∂2Ã

∂z̃2
(5.7)

to connect the pressure with the displacement thickness as well as limiting conditions

ũ3 − ỹ3dUxo(0)/dy2 −→ Ã(̃t, x̃, z̃)dUxo(0)/dy2, (5.8a)

w̃3 − ỹ3dUzo(0)/dy2 −→ Ã(̃t, x̃, z̃)dUzo(0)/dy2 (5.8b)

at the upper reaches ỹ3 → ∞ of the lower viscous sublayer come from matching
(5.5a–d) to (5.3a–d), D(zz) being defined in (3.14c). In addition, the conventional
no-slip conditions

ũ3 = ṽ3 = w̃3 = 0 (5.9)

hold at the solid surface ỹ3 = 0.
An affine transformation allows us to exclude all the parameters C , R0(0), D(zz),

dUxo(0)/dy2 and dUzo(0)/dy2 from the governing equations (5.6a–c), interaction law
(5.7) and constraints (5.8a, b) to be met as ỹ3 →∞. However, since our aim is deriving
a set of composite equations and boundary conditions which might be employed to
cover both moderate values of the frequency and wavenumbers and the extreme case
involving indefinitely large frequencies and wavenumbers we omit details and restrict
ourselves to fundamental properties inherent in the jet-like crossflow.

According to Smith & Duck (1977), the boundary-value problem formulated con-
trols separation from a side part of a vortex elongated in the streamwise direction.
On the other hand, Ryzhov (1982) pointed out that the model (5.6a, c), (5.7), (5.8b)
and (5.9) leads to unstable eigenmodes. However, in the framework of this model
the disturbance amplitude growth rate proves to decay as the wavenumber tends to
infinity. Hence the Cauchy problem remains well posed in the limiting case under
consideration. The new effects entering at high wavenumbers were also treated in a
relevant study by Davis (1992). However, the asymptotic system of equations appears
in that work in a form somewhat different from (5.6a–c) and (5.7).

6. Composite asymptotic model
As has been mentioned in the preceding section, a singularity in the real part of ω1

ensuing from (4.10a, b) implies that a typical value of the frequency in this limiting
case becomes ω1 ∼ O(ε−1) while both wavenumbers k = k0 and m = m0 are kept
fixed. It is possible to show that this singularity causes a critical layer to form at some
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distance from a solid surface. Insofar as the Cauchy problem remains well posed we
leave aside an in-depth analysis of the corresponding disturbance pattern.

Let us incorporate the second, and even stronger, singularity occurring in the
imaginary part of ω1 into the composite asymptotic model. The way to remove
this singularity in the limit as both wavenumbers k and m tend to infinity has been
thoroughly analysed in the preceding Section. When devising an extended theory
we may proceed in an analogous manner. However, there is a point of nicety to
be elucidated at first. By virtue of (5.2b, d) characteristic values of xm and zm in
the limiting case become O(R−11/28) and O(R−12/28), respectively. On the assumption
that R → ∞ they prove to be much larger than a reference wavelength of order
R−9/20 intrinsic to disturbances from the vicinity of the upper branch of the neutral
stability curve (Bodonyi & Smith 1981; Zhuk & Ryzhov 1983). So, our consideration
is not beyond the scope of the triple-deck approach. Next, on the strength of (5.1)
a typical thickness of the near-wall viscous sublayer can be estimated as O(R−9/14).
Asymptotically this region is located beneath the critical layer of the upper-branch
disturbances that lies at a distance O(R−11/20) from the solid surface. What is more, in
the limiting case in question the near-wall viscous sublayer turns out to be submerged
in the lower deck of the conventional triple-deck structure. In consequence the flow
pattern as a whole remains intact even if an extended version of the triple-deck theory
has to encompass (and mitigate) the stronger singularity. However, in practical terms
the distinctions between all of the aforementioned characteristic lengths are small and
hardly discernible at values of the Reynolds number in the range of transition.

It follows from the foregoing that the self-induced pressure in the form of (2.6)
controls the potential flow region. The velocity and density fields in the main deck
obey the expressions

u2 = Am (tm, xm, zm)
dUxo

dy2

, w2 = Am (tm, xm, zm)
dUzo

dy2

, (6.1a, b)

v2 = −∂Am
∂xm

Uxo(y2)−
∂Am

∂zm
Uzo(y2), (6.1c)

ρ2 = Am (tm, xm, zm)
dR0

dy2

(6.1d)

analogous to (5.4a–d). A distinction arises from the dependence of v2 on both
velocity profiles Uxo and Uzo rather than owing to accounting for the second-order
terms in (2.9). However, the leading of the second-order terms in (2.8) determines a
non-vanishing normal component of the pressure gradient

εUzo

∂v2

∂zm
= − 1

R0

∂p2

∂y2

(6.2)

in keeping with the analysis set forth in §5. Integrating (6.2) results in

p2 = p2∞(tm, xm, zm)− ε∂
2Am

∂z2
m

∫ ∞
y2

R0(Y2)U
2
zo(Y2)dY2 (6.3)

with an additional term p2∞(tm, xm, zm) on the right-hand side as compared to the
limiting case (5.4e). No other terms in the main deck stem from allowing for the
second singularity. The near-wall viscous sublayer is governed by (2.12a–c) as before.

Let us introduce the normalized displacement thickness −A by means of

Am = τ−3/4
w C5/8(T ∗w/T

∗
∞)3/2A (6.4)
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and go over from a frame of reference (tm, xm, zm) to a system of canonical variables
t, x, z. Then the matching of (6.1c), as y2 → ∞, to the normal velocity at the bottom
of the outer deck provides a condition

∂ϕ1

∂y1

= −∂A
∂x

at y1 = 0, (6.5)

with y1 defined in (2.2), to be introduced into (2.6). The form of (6.5) is precisely the
same as the one adopted in the classical triple-deck theory. Using (6.5) we infer from
the matching of the pressures in two regions under consideration that

p2∞(t, x, z) = −τ1/2C1/4 1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

∂2A(t, ξ, ζ)/∂ξ2[
(x− ξ)2 +

(
1−M2

∞
)

(z − ζ)2
]1/2 dζ (6.6)

All that remains to be done is to match solutions for the main deck and the
near-wall viscous sublayer. Following the standard procedure, as applied to (6.1a, b),
and using definitions (1.1a, b) of τx and τz we arrive at conditions

u3 − τxy3 → τxA, w3 − τzy3 → τzA as y3 →∞ (6.7a, b)

for velocity components in a horizontal plane. Next, since p3 = τ
−1/2
w C−1/4p2, as

y2 → 0, an expression for the pressure across the near-wall sublayer can be obtained
relying on (6.3) with Am transformed to A through (6.4). From (6.6) we find that

p3 = − 1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

∂2A(t, ξ, ζ)/∂ξ2[
(x− ξ)2 +

(
1−M2

∞
)

(z − ζ)2
]1/2 dζ − ε2D(zz)

∂2A

∂z2
(6.8)

where the small parameter ε2 = ετ
5/4
w C−3/8(T ∗w/T

∗
∞)−3/2. Notice that the limiting

conditions (6.7a, b) at the upper reaches of the near-wall sublayer acquire precisely
the same form as they take within the framework of the conventional triple-deck
theory. To the contrary, the generalized interaction law (6.8) involves an additional
term that stems from accounting for centrifugal forces due to the local curvature
of streamsurfaces in most of the boundary layer. As usual, variations of p3 are
to be found simultaneously with the velocity field u3, v3, w3 and the instantaneous
displacement thickness A by integrating the system (2.12a–c) subject to the limiting
conditions (6.7a, b), as y3 →∞, and the no-slip conditions u3 = v3 = w3 = 0 at the flat
plate y3 = 0. Thus, the composite asymptotic model sought is complete. Disturbances
of a different nature, including travelling waves and crossflow vortices are coupled
together within the new model.

In searching for a linear solution of the travelling-wave type we use (3.1) and
decompose A in a similar way:

A = A0 exp[i(ωt+ kx+ mz)]. (6.9)

However, a brief inspection of the solution in the main deck proves to be instrumental
in elucidating an important feature of the model. Making use of the matching
condition (6.5), as applied to (3.6a, b), (3.7) and (6.1c), (6.9), results in an expression

g2 = −iτ1/2
w C1/4p10 (kUxo + mUzo)

`

k2
(6.10)

that is nothing other than the leading-order term of the general relationship (3.11a).



Wave motion in a steady three-dimensional subsonic boundary layer 123

Next, (6.1a, b) reduce to

f2 = iτ−5/4
w C3/8

(
T ∗w
T ∗∞

)3/2
dUxo

dy2

g2

kUxo + mUzo

, (6.11a)

h2 = iτ−5/4
w C3/8

(
T ∗w
T ∗∞

)3/2
dUzo

dy2

g2

kUxo + mUzo

, (6.11b)

giving the leading-order terms of (3.15a, b), respectively. Thus, the formation of a
critical layer is not allowed in the context of the composite model since the ratio
g2/(kUxo+mUzo) remains finite for any y2 on the strength of (6.10). The corresponding
assumption has been made in §2 in order to substantiate the replacement of p2 in
(2.9) by its limiting value p2∞ at the outer edge of the main deck.

In the limit as y3 →∞ we get both f → A0 and h→ A0 by virtue of (6.7a, b), hence
F → KA0 in agreement with the conventional triple-deck approach. A relation

p30 = A0

(
k2

`
+ ε2m

2D(zz)

)
(6.12)

between the constants p30 and A0 comes from the interaction law (6.8). The second
term in the brackets on the right-hand side of (6.12) gives a contribution from centrifu-
gal forces supported by the local curvature ∂2A/∂z2 of streamsurfaces. Eliminating
A0 between F(∞) = KA0 and (6.12) we derive from (3.17a) a dispersion relation

Φ(Ω) =
i1/3(k2 + m2)

K5/3

(
k2

`
+ ε2m

2D(zz)

)
(6.13)

with Φ defined by (3.17b). It is necessary now to put linear properties of the composite
model, governed by the modified dispersion relation, to a test.

The singularity in Re(ω1) responsible for the high-frequency behaviour in the limit
as K → 0 and k → k0, m → m0 remains not affected to leading order. The term
proportional to ε2 on the right-hand side of (6.13) contributes only a small correction
to the first root ω1, thus (4.10a, b) still hold. As mentioned above, the singularity in
Re(ω1) causes a critical layer to be formed in the disturbance field. The flow pattern
that results is beyond the scope of present analysis.

When analysing the second, and much stronger, singularity leading to ill-posedmess
of the Cauchy problem within the framework of the conventional triple-deck theory
we need to keep in mind that preserving a correction term in the interaction law
(6.8) and ensuing dispersion relation (6.13) entails the first-order contribution to ω1

when both wavenumbers k and m tend to infinity. Even with the correction term
present, (6.13) can be studied using the same symmetry properties that are intrinsic
to (4.4) and specified in (4.5) and (4.6). This makes it possible to take full advantage
of results for the complex Ω-plane set forth in §4 and apply them to tackling the
most important issue on contours of Im(ω1) under the assumption that k and m are
real. In the limiting case ε2 = 0 these lines are plotted in figure 3 for M∞ = 0.2,
τx =

√
8/3, τz = 1/3, and of particular interest is an image of the neutral stability

curve Im(ω1) = 0 whose asymptotes m = ±0.999τ
−5/2
z k3 stretch to infinity in the

(k, m)-plane, as k → ∞. However, the shape of the contours far from the origin
dramatically changes if ε2 6= 0. This may be concluded from figure 4 drawn for the
same values of M∞, τx, τz but with ε2 = 0.001. Here the symmetry properties (4.5) and
(4.6) are easily recognizable again. Two local negative minima of Im(ω1) and a local
negative maximum in between are even more clear cut in figure 4 as compared with
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Figure 4. Contours of Im(ω1) in the real (k, m)-plane formed by both wavenumbers under the

extended asympototic model; ε2 = 0.001,M∞ = 0.2, τx =
√

8/3, τz = 1/3.

analogous extrema of the same function shown in figure 3. In consequence of a new
structure of the (k, m)-plane, the asymptotic behaviour of the disturbance amplitude
growth rate becomes different from one intrinsic to the limiting case ε2 = 0. To prove
this statement let m = ck3, k → ∞ in (6.13). As a result the dispersion-relation root
ω1 is given by

ω1 = −ε2c3τ−1
z D(zz)k

9 −
√

2

2
(1 + i)ε

−1/2
2 c−1/2τ3/2

z D
−1/2
(zz) k

−3/2 (6.14)

in the first two approximations provided that ε2c
3k7 � 1. It should be pointed out

that (6.14) ensues from the analysis presented in §5 for k ∼ ε−1/7 (see also Ryzhov
1982). Thus, the amplitude growth rate of self-excited modes turns out to be bounded
for any k and tends to zero as k → ∞. The Cauchy problem becomes well posed
within the framework of the composite asymptotic model developed where allowance
for centrifugal forces is a crucial element in suppressing unrealistic amplification of
short-scaled disturbances.

Images of the neutral stability curve Im(ω1) = 0 in the upper half-plane of the real
(k, m)-plane are depicted in figure 5 for different values of ε2. A curve that corresponds
to the limiting case ε2 = 0 is labelled 0, and in compliance with the foregoing their

asymptotes stretch to infinity indefinitely, approaching m = ±0.999τ
−5/2
z k3 as k → ∞.

However, with ε2 6= 0 all the other curves numbered 1, 2, 3 are closed loops. The
greater the value taken by ε2, the smaller are dimensions of the loops (in fact the
spanwise wavenumber m does not exceed 5 even if ε2 remains as small as 0.01). Thus,
the effects of centrifugal forces are twofold: they make a domain of stable eigen-
oscillations bounded in the (k, m)-plane, and the amplitude growth rate of self-excited
modes remains finite with k → ∞. Further inspection of (6.14) discloses that stable
oscillations are realized solely when c→∞.
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shown are calculated on the assumption that the trajectory m = 0.1356τ
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z k3 corresponds to the

maximum amplification in the limiting case ε2 = 0.

The disturbance amplitude growth rate fixed by −Im(ω1) is shown in figure 6 for
different values of ε2 as a function of the spanwise wavenumber m. All the curves

here are obtained on the assumption that the trajectory m = c∗2k
3 = 0.1356τ

−5/2
z k3

corresponding to the maximum amplification in the limiting case ε2 = 0 is chosen in
the (k, m)-plane. The curve labelled 0 relates to ε2 = 0, so it may be regarded as an
outcome of the conventional triple-deck theory. Accordingly, the amplitude growth
rate tends to infinity as m→ ∞. The other curves marked 1, 2, 3 are calculated with
ε2 6= 0. Their behaviour suggests that self-excited disturbances are amplified within
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certain bounds for all m, and

Im(ω1) = −
√

2

2
ε
−1/2
2 τ3/2

z D−1/2
zz m−1/2 as m→∞, (6.15)

in view of (6.14). The passage to the limit ε2 → 0 is non-uniform: the smaller is a
value of the parameter, the greater are spanwise wavenumbers required for achieving
the final attenuation of Im(ω1). However, the asymptotic decay Im(ω1) → 0, as
m→∞, ensues from (6.15) no matter how small (but fixed) ε2 may be.

7. Concluding remarks
Results presented above for a steady subsonic three-dimensional boundary-layer

flow on a flat plate allow us to isolate TS and crossflow instabilities from leading-edge
contamination and Görtler vortices developing on the blunt nose of a swept wing. The
former two instabilities turn out generally to be interconnected and inseparable, i.e. TS
waves and crossflow vortical disturbances interact and grow simultaneously. However,
crossflow instability becomes dominant if both wavenumbers tend to infinity, being
tied by a certain relation. In this limiting case a set of simplified equations controls the
wave pattern developing in the spanwise direction. Here the dominant fluid motion
occurs in the form of a jet-like near-wall flow. This flow is driven by the self-induced
pressure gradient (5.7) balancing centrifugal forces arising owing to the large curvature
of streamsurfaces in the main deck. TS waves propagating in the streamwise direction
exert no influence on the spanwise jet-like disturbances and do not contribute, to
leading order, to their amplification. On the other hand, the excitation and growth of
crossflow oscillations strongly affect the mechanism of TS instability. The dominant
short-scale spanwise motion in a three-dimensional boundary layer bears a close
resemblance to a viscous jet spreading along a solid flat plate (Smith & Duck 1977;
Ryzhov 1982).

As is known from Zhuk & Ryzhov (1982), Smith & Burggraf (1985) and Kachanov,
Ryzhov & Smith (1993), the triple-deck regime of viscous/inviscid interaction gives
way to an essentially nonlinear soliton stage when the wave amplitude attains values
measured in terms of a parameter ∆ such that ε� ∆� 1. A new adjustment sublayer
is embedded between the main deck and near-wall sublayer at this stage of short-
scaled crossflow oscillations. The disturbance pattern within the adjustment sublayer
proves to be inviscid and is obtainable by solving a system of boundary-layer-type
equations (5.6a, c) with ∂2w̃3/∂ỹ

2
3 omitted on the right-hand side of the latter. In

appropriately scaled and normalized variables a desired solution to the simplified
equations reads (Zhuk & Ryzhov 1982; Smith & Burggraf 1985)

w̃3 = ỹ3 + Ã, ṽ3 = −ỹ3

∂Ã

∂z̃
− ∂Ã

∂t̃
− Ã∂Ã

∂z̃
− ∂p̃3

∂z̃
(7.1a, b)

where Ãw = Ã+ yw comes from

∂Ãw

∂t̃
+ Ãw

∂Ãw

∂z̃
=
∂3Ãw

∂z̃3
− f, f =

∂3ỹw

∂z̃3
(7.2a, b)

in view of the interaction law (5.7), ỹw = ỹw (̃t, z̃) being the shape of a local uneveness
on an otherwise flat plate. Thus, the generation of coherent nonlinear crossflow
structures can be studied using (7.1a, b) with the instanteneous displacement thickness
−Ã determined by both periodic and solitary-like wave solutions of the famous
Korteweg–de Vries equation. It is an intricate unsteady motion that generally emerges
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even if a forcing f in the inhomogeneous model (7.2a, b) is assumed to be independent
of time.
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